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For the ternary thioferrate crystal Na6Fe2S6, ab initio quantum chemical calculations using a cluster model
ansatz have been performed to examine the magnetic coupling of the two half-filled Fe 3d shells in the
isolated dimeric [Fe2S6]6- complexes having the structure of edge-linked double tetrahedra. The active-
electron approach using complete active space configuration interaction (CASCI) with 10 electrons in 10
orbitals yields the multiplet splitting of a two-center Heisenberg Hamiltonian with an antiferromagnetic coupling
constantJ ) -19 cm-1, which is by a factor of 5 smaller than the experimental value. Correlation effects
are essential for the magnetic coupling, as the application of multireference second-order Møller-Plesset
perturbation theory based on the CIPSI algorithm (CAS-2nd) and the recently proposed difference-dedicated
CI method lead to valuesJ(4f5) ) -158 and-66 cm-1, respectively, which clearly agree better with
experiment. The different electronic contributions to the chemical bonding in the binuclear transition metal
complex have been investigated using the constrained space orbital variation method.

1. Introduction

The theoretical investigation of magnetic interactions in ionic
solids by means of rigorous ab initio calculations is an interesting
and recent research field for quantum chemists. Often the
energy difference between the electronic states involved in these
interactions is very small (usually<1000 cm-1) compared to
other electronic energy scales, like the bonding energies, for
example. Furthermore, instantaneous electron-electron interac-
tions, or electronic correlation, play a crucial role in determining
the magnitude of the magnetic coupling constant, and therefore
high efforts and elaborate methods are necessary for the
calculation of these small energy differences.
In the last years, Bronger and co-workers synthesized a series

of thioferrates(III), all of them being composed of tetrahedral
FeS4 structural units. Depending on the stoichiometry, their
structures range from isolated tetrahedral [FeS4]5- anions1 to
one-dimensional∞

1 [FeS4/2] chains of edge-linked tetrahedra.2

An important link between Na5FeS4 with its isolated magnetic
moments and NaFeS2, a one-dimensional magnet, is made by
the crystal Na6Fe2S6, as it consists of isolated [Fe2S6]6- anions
with two magnetic Fe centers.3,4 For this reason the dimeric
complex [Fe2S6]6-, which has the structure of edge-linked
double tetrahedra, is an interesting object of investigation to
both experimentalists and theoretical chemists. X-ray diffraction
studies have shown that the real geometry of the [Fe2S6]6-

complex exhibitsD2h point group symmetry only approximately
because the edge-linked double tetrahedra are slightly distorted
from a regularD2h structure. The six sulfur atoms occupy the
corners and the two iron ions, each having a 3d5 configuration,
the centers of the tetrahedra.
For the [Fe2S6]6- dimer both magnetic susceptibility mea-

surements5 and neutron scattering experiments6 yield an anti-
ferromagnetic coupling of the two Fe ions which can be
described through a Heisenberg model Hamiltonian with a
coupling constant ofJ ) -95 cm-1. In the framework of this
model Hamiltonian, the two 3d5 cations give rise to a multiplet
splitting between the singlet ground stateS) 0 and the excited

states withS) 1, 2, 3, 4, and 5. In addition, from the magnetic
susceptibility measurements, a local medium-spin stateSi ) 3/2
for the Fe ions has been deduced for the dimer (whereas the
same authors have found a local high-spin stateSi ) 5/2 for the
Fe ions in the monomer complex).
Previous studies on the [Fe2S6]6- dimer have used the

semiempirical extended-Hu¨ckel approach7 or the spin-unre-
stricted Hartree-Fock (UHF) method.8 The UHF studies of
magnetic coupling are based on the use of broken symmetry
solutions, and dynamical electronic correlation effects are either
neglected or approximately introduced by means of correlation
functionals.9 In spite of these limitations, rather good results
have been obtained on polynuclear sulfur-bridged iron
complexes.10-14 However, Schmidtke et al.8 could not report
about the magnetic coupling constant in the dimer. This is
probably because these simple studies do not treat the correlation
effects thoroughly enough. Intensive quantum chemical studies
for the monomer and the dimer have been performed by Mo¨dl
et al.15,16 For the dimer [Fe2S6]6- the active-electron approach
based on the complete active space self-consistent field (CASS-
CF) method with 10 active electrons and 10 active orbitals,
performed with large basis sets of one-electron functions, leads
to a significant deviation from the empirical Heisenberg
Hamiltonian, as the coupling constants range fromJ(4f5) )
-18 cm-1 to J(0f1) ) -28 cm-1. Furthermore an analysis
of the CASSCF wave functions by expectation values of local
operators has been presented17 allowing for the calculation of
the local spin state on either Fe site and for a discussion of
interatomic and intraatomic correlation effects. It has been
shown that the local spin configuration on both Fe ions is a
high-spin stateSi ) 5/2 and not a medium-spin state. Going
beyond the active-electron approach, improved correlation
calculations with MRCI and ACPF have been carried out by
applying an approximation based on increments. This results
in a coupling constant ofJ(4f5) ) -65 cm-1 (see ref 16).
As shown above and in many other examples, the active-

electron approach is not able to yield quantitatively correct
magnetic coupling constants. This is because important physical
effects such as potential exchange, kinetic exchange, dynamic
spin polarization, and charge transfer, as well as polarization
of the ionic forms, are not included in the simple active electron
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approach. A complete list of the missing, up to second order,
contributions have been reported by De Loth et al.17,18 and
Daudey et al.19 The ab initio calculation of the magnetic
coupling of two transition metal ions beyond the CASSCF
approach becomes most complicated when both d shells are
half-filled, which is the case for the complex [Fe2S6]6- as this
gives rise to a huge number of determinants in the complete
active space (CAS). Using the exact crystallographic atomic
coordinates and henceC1 point group symmetry, the singlet
ground state is built by 63 504 determinants. As the deviation
from the exactD2h geometry is only small, a symmetrized cluster
model can be considered. As has already been shown, the
symmetrization of the cluster geometry has only weak influence
on the electronic structure and, hence, on the magnetic
coupling16 but reduces the CAS for the1Ag ground state to only
7992 determinants. This is, however, a too large expansion to
be used as reference space. Moreover, truncation or selection
techniques cannot be applied because of the very small energy
differences involved.
In the present work we have performed highly correlated

calculations for the excited statesS) 3, S) 4, andS) 5, by
considering a specific subset of the single and double excitations
on each determinant belonging to the CAS and allowing for
excitations from all 24 valence orbitals of the sulfur ligands.

2. Computational Details

Due to the fact that the thioferrate complexes [Fe2S6]6- are
isolated and well separated in the crystal, a cluster approach is
doubtless appropriate and straightforward to model this system.
This cluster model approach allows one to use molecular ab
initio methods for the investigation of magnetic coupling in the
bulk Na6Fe2S6 system. In our calculations, we have considered
one thioferrate anion [Fe2S6]6- as a cluster where the atoms
are indeed treated by pseudopotentials and a finite basis set.
For a correct embedding of the cluster in the crystal environment
we have added 1040 point charges, which have been optimized
to model the electrostatic Madelung field of the crystal. Since
our calculations have only been feasible by exploiting theD2h

point group symmetry, we have used theD2h-symmetrized
geometry instead of the realC1 symmetry of the complex. A
more detailed description of the point charge optimization
procedure and theD2h symmetrization has been described in
ref 16. A similar modeling of the crystal Madelung field by
an array of optimized point charges has already been proposed
by Illas et al.20 Since only the thioferrate complex [Fe2S6]6-

itself (and also the Madelung field) but not the remaining crystal
atoms have nearlyD2h symmetry, it is not compatible with the
use ofD2h symmetry to increase the cluster size and include
the next-nearest Na ions to the cluster.
In our ab initio calculations we used the large-core pseudo-

potentials derived by Durand et al.21-23 The pseudopotential
for Fe was constructed from Fe+ and previously used to study
FeH and FeH+ molecules24,25and the Fe+ + H2 potential energy
surface.26 We must remark that this Fe pseudopotential is
derived from relativistic Dirac-Fock atomic calculations and,
hence, scalar relativistic effects are included. For S we also
use a pseudopotential of the form reported by Durand et al.21-23

The (4s4p6d|3s2p3d) basis set for Fe is the one used in previous
studies;24-26 i.e., it is of valence-triple-ú (VTZ) quality. The
basis set for S is (4s4p1d|2s2p1d), which is a valence-double-ú
(VDZ) basis previously used in ref 27, but we have added a
diffuse p function with exponent 0.03. With these two basis
sets for Fe and S, the total dimension of the finite basis set for
the [Fe2S6]6- cluster is 126 atomic orbitals (AOs). In a previous
work16 on the thioferrate crystal Na6Fe2S6 we have shown that

it is not the size of the basis set but the proper treatment of
correlation which is crucial for a correct quantitative result of
the magnetic coupling constant. The recent investigations by
Illas et al. on KNiF3 and La2CuO4 also confirm that the basis
set is not the crucial part of the problem.28,29

The simplest model and a widely used ansatz in solid-state
physics for the magnetic interaction of two localized spinsSB1

andSB2 is the Heisenberg Hamiltonian

where J is the magnetic coupling constant. This effective
Hamiltonian was first derived by Heisenberg30 and Dirac31

assuming certain restrictions on the exchange integrals between
orbitals on different atoms. Several attempts to remove some
of these constraints were later carried out. In particular, we
must quote the work of Nesbet32 and Herring33 which provided
a basis for a broader validity of eq 1 (for a thorough review,
see ref 34). We must finally mention that spin Hamiltonians
can be deduced more rigorously using the quasi-degenerate
perturbation theory (see ref 35 and references therein).
In the pioneering work of Nesbet,36,37it was already suggested

that accurate ab initio calculations have to be able to predictJ.
For the two-center spin-only Hamiltonian in eq 1, the eigen-
values

are immediately expressed by the total spin quantum numberS
) |S1 - S2|, ..., |S1 + S2| as H is already diagonal in the
eigenfunctions toSB2 andSB ) SB1 + SB2 holds. From this follows
the Lande´ interval ruleE(S) - E(S-1) ) 2JSfor the multiplet
splitting of the two coupled spins. Establishing a link to our
ab initio calculations, the Lande´ rule serves us as a definition
of J(S-1fS) for arbitrary multiplet energiesE(S).
As has already been shown16 and is reconfirmed by our

calculations, both Fe ions carry a local high-spinSi ) 5/2, which
is expected from Hund’s rule although it strictly applies to the
ground state of free ions only and not to ions in a crystal field.
In our ab initio approach for the investigation of magnetic
coupling we start, following a widely used strategy, from the
ferromagnetically coupled stateS) 5 of a spin-restricted open-
shell Hartree-Fock (ROHF) calculation. This one-determinant
wave function consists of 10 singly occupied molecular orbitals
(MOs) which are seen to be linear combinations of mainly 3d
atomic orbitals with a small mixture of ligand 3s and 3p atomic
orbitals (LCAO); this is the justification to denote the config-
uration of the two equivalent Fe ions in the complex as 3d5.
Due to the AbelianD2h point group, these singly occupied 3d-
like MOs are nondegenerate and belong to the one-dimensional
irreducible representations (irreps) ag, ag, b1u, b1u, b3u, b2g, b2u,
b3g, b1g, and au. The ferromagnetic ROHF stateS ) 5 is
therefore11B1u.
It can be shown that the remaining statesS) 0, ..., 4 of the

multiplet belong to the same irrep B1u if the total spin quantum
numberS is odd and belong to the totally symmetric irrep Ag

if S is even; i.e., the six multiplet states are11B1u, 9Ag, 7B1u,
5Ag, 3B1u, and1Ag. In our complete active space configuration
interaction (CASCI) calculations, the ROHF MOs of the11B1

ferromagnetic state have been used to obtain the CI expansions
corresponding to each value ofS, in contrast to CASSCF. This
is because of the need to have a fixed model space within which
the model Heisenberg Hamiltonian will be built up. The
determinants of the CAS have been selected (1) by the
z-componentSz of the vector of the total spinSB and (2) by the
irreducible representation of the determinants, i.e., by exploiting

H ) -2JSB1‚SB2 (1)

E(S) ) -J[S(S+1)-S1(S1+1)-S2( S2+1)] (2)
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spinor and spatial symmetry, respectively. ForSz ) 5 the CAS
contains one determinant and therefore is equivalent to ROHF,
whereas it consists of 7992 determinants forSz ) 0. In
particular, all six multiplet energies can be found theoretically
by considering the three, two, and one lowest energy eigenvalues
for Sz ) 0, Sz ) 2, andSz ) 4 and Ag, respectively, and forSz
) 1, Sz ) 3, andSz ) 5 and B1u, respectively. The redundant
information may be used to check that the different roots of
the CASCI matrix obtained from the Davidson procedure are
in fact those which one wants to compute effectively.
The CASCI wave function contains many important physical

effects, such as the direct exchange and the superexchange via
the bridging ligands. The latter goes back to Anderson38 and
is also referred to as kinetic exchange as it originates from
charge fluctuations between the two Fe 3d shells intermediate
by the sulfur orbitals. For a quantitative description of magnetic
coupling, however, CASCI is not appropriate as it lacks very
important correlation effects. Following De Loth et al.18 and
Daudey et al.,19 these terms may be classified as potential
exchange, kinetic exchange, dynamic spin polarization, and
charge transfer, as well as polarization of the ionic forms. We
have introduced these correlation effects by considering the
appropriate single and double excitations out of all 24 sulfur
valence orbitals (2s and 2p) using the CASCI wave functions
as references. This is because direct application of multiref-
erence CI (MRCI-SD), with single and double excitations, for
our system, however, is too complicated, as even for the two
simplest multiplet states11B1u and9Ag, which consist of 1 and
14 CAS reference determinants, respectively, the use of the
above described basis set leads to a MRCI expansion containing
3.6× 105 and 4.9× 106 determinants, respectively. While it
is possible to find the first root by direct diagonalization it is
quite difficult to obtain the second, and to obtain a third one is
out of question. Therefore we have applied two different
methods which can be thought of as good approximations to
the full MRCI-SD wave function. The first method, hereafter
referred to as CAS-2nd, is a second-order multireference
perturbation theory based approach which uses the barycentric
Møller-Plesset partition of the Hamiltonian and the CASCI
eigenfunction as zeroth-order wave function.39 The second
method may be described as a difference-dedicated configuration
interaction and will be denoted as DDCI. The DDCI method
was first proposed by Miralles et al. for the variational
calculation of singlet-triplet energy differences and bond
energies40,41and has successfully been applied to investigation
of magnetic coupling constants in ionic solids28,29,42-45 and
inorganic complexes.46-48 Since the application of the DDCI
approach to magnetic exchange coupling in polynuclear com-
plexes has already been reviewed by Handrick et al.49 we only
briefly restate the main features.
The basic concept of DDCI is the reduction of the CI space

by a clever selection of determinants for the evaluation of energy
differences. The CAS×full(S+D) space (i.e. of a MRCI-SD
calculation) originates from the CAS space by single and double
substitutions,Sp,i

+ ) ai
+ap andDpq,ij

+ ) ai
+aj

+apaq, respectively.
Since the set of all orthogonal molecular orbitals (MOs) can be
partitioned into the three disjunct sets ofnC inactive occupied
or core MOs (labeledp, q, ...), nA active MOs (labeleda, b,
...), andnv inactive virtual MOs (labeledi, j, ...), the double
substitutions have either 1 degree of freedom (ab f cj, ap f
cd), 2 degrees of freedom (abf ij , paf cj, pqf cd), 3 degrees
of freedom (paf ij , pqf cj), or 4 degrees of freedom (pqf
rs). On the basis of arguments derived from the quasi-
degenerate perturbation theory (QDPT), Miralles et al.40,41have
shown, by constructing a second-order corrected effective

Hamiltonian,Heff, that the 4-degrees-of-freedom substitutions,
which are the most numerous ones and bring most of the
correlation energy, do not contribute to energy differences in
second order and can therefore be left out. That they do not
contribute to the difference energy was already proven by
Malrieu50 as early as 1967.
The so-selected CI space with substitutions of only up to 3

degrees of freedom is called T space. In the case discussed
above, the T space selection reduces the MRCI-SD space for
11B1u to 1.5× 105 and for9Ag to 2.0× 106 determinants, i.e.,
to less than half. For a full variational treatment, the DCCI3
space (or T space) may still be too large. Miralles et al. have
therefore suggested to restrict the T space to 1 and 2 degrees of
freedom,41 and the resulting Cl may be denoted as DCCI2. For
a magnetic problem in a fully degenerate model space the
DCCI2 contains indeed all the determinants that contribute to
the energy difference up to second order; these determinants
are indeed those responsible for the potential exchange, kinetic
exchange, dynamic spin polarization, and charge transfer, as
well as polarization of the ionic forms (see refs 18 and 19). In
the present case the DCCI2 expansion includes only 20 584
determinants for11B1u and 5.0× 105 determinants for9Ag. We
will indeed show that the DCCI3 terms not included in DCCI2
do make only a modest contribution to the second-order energy
difference as computed using the barycentric Møller-Plesset
partition of the electronic Hamiltonian as in the CIPSI algo-
rithm.39 We will be able discuss and confirm this assumption
by considering the dependence of the energy differences upon
the CI space selection by second-order Møller-Plesset perturba-
tion theory. With CAS-2nd(n) we mean that the selected CI
space contains double substitutions with up ton degrees of
freedom, but the determinants out of the CAS are treated
perturbatively to second order (n ) 4, 3, 2).
All quantum chemical calculations have been performed using

a locally modified version of the PSHF-CIPSI system of
programs51 in combination with program modules for the
DDCI52 and for direct-CI.53,54

3. Results and Discussion

In this section we will first discuss the results obtained using
the Anderson model; this is the active-electron approach or
CASCI method. These are also compared to CASSCF calcula-
tions, which have been performed earlier, and a connection to
the Heisenberg Hamiltonian is shown. Then we discuss the
influence of correlation to the magnetic coupling constantJ
regarding selected CI spaces of different sizes and applying both
perturbative and variational methods, i.e., CAS-2nd(n) and
DDCI2, respectively. Finally a constrained space orbital
variation (CSOV) analysis is used to quantitatively discuss the
electronic contributions to the chemical bonding in the [Fe2S6]6-

complex and examine their influence on the magnetic coupling
constantJ.
In Table 1 we report the magnetic coupling constantJ as

obtained from various multiplets. In particular we have used
the states11B1u, 9Ag, and7B1u. These results show that applying
the ROHF orbitals of the11B1u state, the CASCI energies
reproduce the behavior expected from the Heisenberg Hamil-
tonian; according to the discussion in section 2, this is by no

TABLE 1: Heisenberg Coupling ConstantsJ for
Transitions S f S + 1 between the Four Highest Multiplet
States (in cm-1)

transition CASCI CAS-2nd(4) CAS-2nd(3) CAS-2nd(2) DDCI2

4f 5 -18.57 -157.9 -154.9 -155.1 -66.0
3f 4 -18.57 -121.7 -118.6
2f 3 -17.85
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means a surprise. Similar results can be obtained for the
remaining multiplicities, and they will not be reported here. We
have not been able to successfully apply the Davidson diago-
nalization for the statesS ) 0 andS ) 1, as root-flipping
problems occurred and the convergence of the algorithm has
been too poor in these cases. For the same reason also the
CASCI energy for S ) 2 and henceJ(2f3) might be
contaminated with little error, and we conclude that the
Heisenberg coupling constant from CASCI using the MOs of
the stateS) 5 is J ) -18.6 cm-1.
This finding seems to be, at first sight, in contradiction to

previous CASSCF results for [Fe2S6]6-, because they yield
different coupling constants for each transitionS f S + 1,
ranging fromJ(0f1)) -27.8 cm-1 to J(4f5)) -18.2 cm-1,
and therefore give a deviation from the Heisenberg Hamilto-
nian,15,16 eq 1. Those CASSCF calculations used the same
cluster geometry but pseudopotentials with a smaller core and
basis sets of comparable quality, which justifies comparison of
the CASCI and CASSCF results. Again, we must recall the
theoretical works of Nesbet32,35-37 and Herring33,34 which
strongly suggest that a system of two interacting spin angular
momenta can be properly described by a Heisenberg Hamilto-
nian as given by eq 1. Therefore the CASSCF results appear
to be quite difficult to understand. However, we must point
out that the Heisenberg Hamiltonian may be in fact thought as
an effective Hamiltonian which is constructed by the appropriate
mapping of accurate ab initio energies. This mapping must be
coherent, using always the same model space. This is guaran-
teed when applying the CASCI orbitals for all the states, but it
is not the case when using the CASSCF approach because in
this case the one-electron basis changes from one multiplicity
to another, thus changing the model space in which the effective
Hamiltonian is built up. In a given Hilbert subspace, the energy
splitting exhibited by the exact or full CI energies will of course
show the behavior of the Heisenberg Hamiltonian, but this will
not be the case for the CASSCF wave functions. In the
CASSCF wavefunction the orbitals are adapted to each state
and may differ substantially from one state to another. In
previous studies on KNiF3, Illas et al.28 have shown that the
difference between CASCI or CASSCF was quite small. In
the present case, however, the difference is much larger and
indicates the importance of nondynamical correlation effects,
which are larger for the [Fe2S6]6- complex. This is not
surprising because the ionicity of this system is lower than that
of KNiF3.
An interesting question which now arises from our discussion

above is the behavior of the magnetic couplingJ(SfS+1) for
CASCI wave functions using MOs which are optimized for the
singlet state1Ag instead of using MOs of the state11B1u, i.e.,
which are taken from the CASSCF wave function forS) 0.
Following Nesbet’s arguments we expect to have an effective
Heisenberg Hamiltonian, i.e., with constantJ. If we furthermore
assume that for the neighboring stateS) 1 the CASCI energy
is not drastically higher than the variational energyssimilar as
for the transition 4f5 in the above caseswe would predict the
coupling to be close to-28 cm-1. These is exactly the result
found in a previous CASSCF study28 and shows that for the
present system the orbital space is very important, and the
resulting CASCI values forJ shift from-18 to-28 cm-1 as a
result of the nondynamical correlation effects included in the
CASSCF wave function. This allows us to separate the
correlation effects into two well-separated parts. This separation
is difficult to carry out using other approaches. In fact, the
results from DCCI2 are much less affected by the orbital space,
simply because they already contain a part of nondynamic

correlation, which appears from the single excitations out of
the CAS and the diexcitations with one degree of freedom.
In order to gain further understanding of the origin of the

magnetic coupling, we have performed a constrained space
orbital variation (CSOV) analysis55-57 of the magnetic interac-
tion. The basic idea is to perform the CASCI calculations using
again a set of molecular orbitals obtained for the ferromagnetic
11B1u state but with different constraints. The CASCI results
for J depend, of course, on the set of molecular orbitals which
are used to build the configurations; changes inJ due to well-
defined changes on the molecular orbitals enable identification
of the chemical contributions to magnetic coupling. This
technique starts from the SCF wave functions of two fragments,
[Fe2]6+ and [S6]12-, and finally creates the ROHF wave function
for 11B1u in several well-defined steps, each of which is defined
by the orbitals to be varied and the space where these orbitals
are allowed to vary. Each variation or step can be associated
with a given physical effect. The [Fe2]6+ fragment is calculated
with total spinS) 5, and the six sulfur atoms are replaced by
-2epoint charges plus a pseudopotential that takes into account
the finite size of the anions although in an approximate way.
The [S6]12- fragment is considered as a closed-shell system with
the Fe ions replaced by point charges+3eplus pseudopotentials
for Fe+. The surrounding point charges, which model the
Madelung field, remain unchanged for both fragments. Starting
by superimposing the electronic densities for the two fragments,
an initial set of orbitals, hereafter referred to as frozen orbital
(FO), is built. From these FO initial CASCI wave functions
for S) 5, 4, and 3 are obtained, and from the energy splitting
a first estimate ofJ is extracted; the same procedure is repeated
using each one of the sets of orbitals obtained through the steps
described in the following. The polarization of the Fe3+ cations
lowers the energy of the11B1u state by 0.32 eV; this is a small
fraction of the total contribution of about 26.4 eV which
separates the energy of the11B1u state as computed by using
the FO or the ROHF orbitals. The second contribution is the
charge transfer donation from the [Fe2]6+ to the [S6]12- unit,
but since the valence shell of the ligands are already filled, this
small effect, which is of about 0.07 eV, must therefore be
ascribed to the basis set superposition error (BSSE). The
variation of the orbitals of the [S6]12- unit in its own orbital
space accounts for about 6.7 eV and illustrates the importance
of the polarization of the ligand orbitals in response to the
presence of the Fe3+ cations. The next two energy contributions,
which are of about 13.9 and 5.4 eV, are ascribed to covalent
bonding. The first one is formally the charge donation from
[S6]12- to [Fe2]6+. For ionic systems such as MgO to BaO this
contribution is small,58,59 hence indicating that the covalent
effects make only a modest contribution. However, a large
contribution does not necessarily indicate covalent bonding and
may be interpreted as further polarization of the [S6]12- unit.
In fact, if the energy of the [S6]12- unit is computed in the
presence of the basis set of [Fe2]6+, the effect of the “ghost”
basis on the energy is as large as when the real Fe3+ ions are
present. At first sight this large contribution may be ascribed
to BSSE, but this cannot be that large and the physical effect
associated by this variation is better described as a mixing
between real charge transfer and anion polarization. We must
point out that the calculation of [S6]12- with the ghost basis
cannot be considered as BSSE simply because there is the+3e
charge at the cation site. In any case we will show later that as
far asJ is concerned this step is not crucial. Finally we consider
the mixing of the [S6]12- closed-shell orbitals with the open-
shell cation orbitals. This is an important covalent contribution
to the energy and we will show that it is a leading mechanism
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to the magnetic coupling. In Table 2 we present a summary of
the different physical contributions to the chemical bond in
Na6F2S6. This summary includes the cumulative,∆1, and the
incremental,∆2, energy contributions to the final ROHF energy
for the 11B1u state for the distinct CSOV stepsi, defined as

following our denotation in the very detailed description shown
in ref 45.
In Table 2 we also report the different values ofJ calculated

using the MOs obtained at each CSOV step. The antiferro-
magnetic order appears even using the FO description although
J is by far too small. Moreover, this small value ofJ does not
change until the magnetic orbitals are allowed to mix with the
valence orbitals of the ligand [S6]12- unit. This indicates that
a large part of the magnetic coupling is due to a certain
delocalization of the Fe 3d orbitals into those of the [S6]12-

unit; this is a clear consequence of the covalent mixing.
So far we have discussed the Anderson model or active-

electron approach including only the determinants of the
complete active space (CAS), i.e., with all 24 ligand valence
orbitals doubly occupied and 10 active electrons in the 10 3d-
like MOs. Neither CASCI nor CASSCF approaches include
the external electronic correlation, which is due to electron
excitations from the core and active orbitals to the virtual ones.
While in some cases, mainly in ionic solids, the active-electron
approach is enough to determine the qualitative behavior of a
material, the quantitative description requires explicit accounting
for these external correlation effects; this is clear from the
theoretical analysis of de Loth et al.18 and Daudey et al.19 For
the [Fe2S6]6- complex we find that the magnetic coupling
constant from CASCI is a factor of 5 too small when compared
to the experimental results. A similarly large shortcoming of
the active-electron picture has been reported by Wang et al.,60

who studied the superexchange coupling in binuclear oxygen-
bridged Ni(II) complexes, and has also been seen in previous
studies for KNiF328,42-45 and La2CuO4.29

The results for the perturbational and the variational treatment
of external correlation energy applying the above described
methods CAS-2nd(n) and DDC12 are also listed in Table 3.
The correlation energies are at least 2 orders of magnitude larger
than the magnetic splitting of the multiplet states. The
systematic reduction of the space of the external determinants

from CAS-2nd(4) to CAS-2nd(2) is accompanied by a decrease
of the correlation energy. However, whereas the number of
external determinants for the states11B1u and9Ag falls by a factor
of 18 and 10, respectively, when going fromn ) 4 to n ) 2,
the perturbative correlation diminishes only by a factor of about
3, which indicates that the DDCI space determinants are
important for both the absolute and the differential correlation
energies. Comparing the variational and the perturbative results
for the same CI space, DDCI2 and CAS-2nd(2), we see that, in
this case, perturbation theory overestimates the correlation
energy by more than 100%. This large deviation is certainly
an artifact of perturbation theory caused by near degeneracies
of CAS determinants with external determinants. Among the
different systems which have been previously studied using a
similar approach,28,29,42-45 the present one is the first where
second-order results largely differ from variational DDCI2 ones.
In Table 1 we report the magnetic coupling constantsJ using

both multireference second-order Møller-Plesset perturbation
theory and the variational DDCI2 method. In the case of using
localized magnetic orbitals, second-order quasi-degenerate
perturbation theory shows that CAS-2nd(4) and CAS-2nd(3)
should give the same results. The fact that both results differ
by less than 2.5% shows that higher-order effects do not indeed
play an essential role for the magnetic coupling. Furthermore,
since CAS-2nd(3) and CAS-2nd(4) give almost the same result,
we recognize that the external determinants with 3 degrees of
freedom contribute very weakly to the transition energies. This
justifies the neglect of the determinants with 3-degrees-of-
freedom substitutions as assumed by the DDCI2. The pertur-
batively calculated coupling constantsJ(4f5) ) -158 cm-1

andJ(3f4)) -122 cm-1 turn out to be 66% and, respectively,
28% larger than the experimental resultJ ) -95 cm-1. The
variational method, however, yieldsJ(4f5)) -66 cm-1, which
is 31% smaller than the experimental value. In particular, both
the variational and the perturbative treatment of correlation lead
to a much better agreement with experiment than the CASCI
and CASSCF methods discussed above, and they clearly show,
once again, the need to go beyond the active-electron approach
for quantitatively accurate results. We want to add here that
the variational DDCI2 method gives nearly the same coupling
constantJ(4f5) as the increment-based ACPF-scheme reported
elsewhere.16

In order to estimate the goodness of the difference-dedicated
CI method with respect to the experiment, we want to indicate
that DDCI was able to give 50% of the magnetic coupling
constant for KNiF328,42-45 and 80% for La2CuO4.29 Since the
first system is three-dimensional and the second two-dimen-
sional, the error can be ascribed to the collective effects which
may play a role and are not treated by the cluster model
approach. However, for the thioferrate crystal Na6Fe2S6 col-
lective effects are less likely, because the [Fe2S6]6- units are
well separated from each other. Therefore one should expect a
better value forJ in our system. The difference between the
experimental and calculated results, however, may be caused
by the need to use a larger basis set, to include higher-order
determinants or, to a lesser extent, by the model used to represent
the real system. We must point out that the electronic density
may change slightly when including the Na counterions and
may depend also on the Madelung field used in the model.
However, we remark that calculations ofJ using point charges
which are 50% of the ones previously described give almost
the same results for the magnetic coupling as reported above.

4. Conclusions

The origin of magnetism in Na6Fe2S6 has been studied by
means of a cluster model and several newly developed theoreti-

TABLE 2: Constrained Space Orbital Variation (CSOV)
Energy Decomposition (Cumulative∆1/Incremental ∆2) (in
eV) for the Ferromagnetic SCF StateS ) 5 and Origin of
the Magnetic Coupling J for the Transitions 4 f 5 and 3f
4 (in cm-1)

orbital
variation

physical
contribution ∆1 ∆2 J(4f5) J(3f4)

FO frozen orbital 0.000 0.000-1.54 -1.54
V(Fe; Fe) cation polarization 0.316 0.316-2.40 -2.40
V(Fe; all) cation donation (BSSE) 0.386 0.070-2.42 -2.42
V(S; S) anion polarization 7.097 6.711-2.19 -2.19
V(S; all) anion donation 20.969 13.872-2.35 -2.35
V(open; closed) open-shell delocation
Full SCF remaining terms 26.444 5.475-18.57 -18.57

TABLE 3: Energies E of the Four Highest Multiplet States,
with Reference to the Electronic EnergyE(S)5) )
-339.217 693 au of the Ferromagnetic State (in au)

spin
S state CASCI CAS-2nd(4) CAS-2nd(3) CAS-2nd(2) DDCI2

5 11B1u 0.000 000-0.644 571-0.282 131-0.184 261-0.080 761
4 9Ag -0.000 846-0.651 767-0.289 188-0.191 328-0.083 767
3 7B1u -0.001 523-0.656 202-0.293 511
2 5Ag -0.002 008

∆1 ) Estep i - EFO and ∆2 ) Estep i - Estep (i-1) (3)
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cal techniques. These techniques allowed not only to compu-
tationally obtain a reasonable estimate for the magnetic coupling
constant but also to understand its physical origin. This has
been possible thanks to the ideas of the constrained space orbital
variation (CSOV) method and the philosophy of the difference-
dedicated configuration interaction (DDCI). We have explored
the DCCI space by means of multireference second-order
perturbation theory and have been able to variationally treat a
large DCCI space through the use of a newly developed direct-
CI method which can handle any general CI space.
In summary, the DDCI method has been successfully applied

for the first time to a system with two half-filled d shells.
Considering the difficulty of the problem, the present results
are in good agreement with experiment. We would like to point
out that, in the authors opinion, more important than reproducing
the experimental value is to be able to understand the physical
origin of magnetic coupling in these thioferrates. The set of
theoretical analysis presented in this work has enabled the origin
of the magnetic coupling in Na6Fe2S6 to be shown.

Acknowledgment. This research has been supported by the
Human Capital and Mobility Programme, Access to Large
Installations, under contract CHGE-CT92-0009 “Access to
supercomputing facilities for european researchers” established
between the European Community and CESCA/CEPBA and
to the projects of DGICYT number PB92-0766-C02-01 and
PB95-0847-C02-01. We also thank Dr. R. Caballol, Dr. O.
Castell, Prof. Dr. P. Fulde, Prof. Dr. H. Stoll, and Dr. M. Dolg
for support and many discussions on this subject.

References and Notes

(1) Klepp, K. O.; Bronger, W.Z. Anorg. Allg. Chem. 1986, 532, 23.
(2) Schmidtke, H.-H.; Packroff, R.; Bronger, W.; Mu¨ller, P. Chem.

Phys. Lett. 1988, 150, 129.
(3) Müller, P.; Bronger, W.Z. Naturforsch. 1979, 34b, 1264.
(4) Bronger, W.; Ruschewitz, U.; Mu¨ller, P. J. Alloys Compd. 1992,

187, 95.
(5) Ruschewitz, U. Ph.D. Thesis, RWTH Aachen, 1992.
(6) Welz, D.; Bennington, S. M.; Mu¨ller, P.Physica B1995, 213/214,

339.
(7) Silvestre, J.; Hoffmann, R.Inorg. Chem. 1985, 24, 4108.
(8) Schmidtke, H.-H.; Rosellen, U.; Diehl, M.Mol. Phys. 1994, 83,

1191.
(9) Noodleman, L.J. Chem. Phys. 1981, 74, 5737.
(10) Norman, J. G., Jr.; Ryan, P. B.; Noodleman, L.J. Am. Chem. Soc.

1980, 102, 4279.
(11) Noodleman, L.; Baerends, E. J.J. Am.Chem. Soc. 1984, 106, 2316.
(12) Noodleman, L.; Norman, J. G., Jr.; Osborne, J. H.; Aizman, A.;

Case, D. A.J. Am. Chem. Soc. 1985, 107, 3418.
(13) Mouesca, J. M.; Noodleman, L.; Case, D. A.; Lamotte, B.Inorg.

Chem. 1995, 34, 4347.
(14) Mouesca, J. M.; Noodleman, L.; Case, D. A.Int. J.Quantum Chem.,

Quantum Biol. Symp.1995, 22, 95.
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